Flow Chemistry Publications

The following (non-exhaustive) list of 246 papers shows peer reviewed work that has been published using the Vapourtec R-Series and E-Series flow chemistry systems. As new work is continually published, please check on our website for updates.

Continuous Flow α-Arylation of N,N-Dialkylhydrazone under Visible-Light Photoredox Catalysis
Juan A. Vega, José Manuel Alonso, Gabriela Méndez, Myriam Ciordia, Francisca Delgado, and Andrés A. Trabanco
Neuroscience Medicinal Chemistry, Janssen Research & Development, Jarama 75A, 45007 Toledo, Spain
http://pubs.acs.org/doi/ipdf/10.1021/acs.orglett.7b00117

Utilization of flow chemistry in catalysis: New avenues for the selective synthesis of Bis(indolyl)methanes
Swapna S. Mohapatraa, b, Zoe E. Wilsona, Sujit Royb, Steven V. Leya
a Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
b Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013, India

Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction
Ananda Herath and Nicholas D. P. Cosford*
Cancer Metabolism & Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA

Preparation of Forced Gradient Copolymers Using Tube-in-Tube Continuous Flow Reactors
Simon Saubern, Xuan Nguyen, Van Nguyen, James Gardiner, John Tsanaktsidis, John Chieffari
CSIRO Manufacturing, Clayton, VIC, Australia

A Continuous Flow Synthesis and Derivatization of 1,2,4-Thiadiazoles
Marcus Baumann, Ian R. Baxendale
Department of Chemistry, University of Durham, South Road, DH1 3LE Durham, United Kingdom.
http://www.sciedirect.com/science/article/pii/S0968089617300901

Self-optimisation and model-based design of experiments for developing a C–H activation flow process
Alexander Echtermeyer1,2, Yehia Amar2, Jacek Zakrzewski2 and Alexei Lapkin2
1Aachener Verfahrenstechnik – Process Systems Engineering, RWTH Aachen University, Aachen, Germany
2Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-13-18

Multi-Step Continuous-Flow Synthesis
Joshua Britton*a and Colin L. Raston*a
Corresponding authors*
a School of Chemical and Physical Sciences, Flinders University, Bedford Park, Australia
http://pubs.rsc.org/-/content/articlelanding/2017/cs/c6cs00830e#!divAbstract

Diels–Alder reactions of myrcene using intensified continuous-flow reactors
Christian H. Hornung, Miguel Á. Álvarez-Diéguez, Thomas M. Kohl and John Tsanaktsidis
CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia

Active Site-Mapping of Xylan-Deconstructing Enzymes with Arabinoxylan Oligosaccharides Produced by Automated Glycan Assembly
Deborah Senf, Colin Ruprecht, Goswinus de Kruijff, Sebastian Simonetti, Frank Schuhmacher, Peter Seeberger, Fabian Pfennig
Max-Planck-Institute of Colloids and Interfaces, Biomolecular Systems, Potsdam, Germany
Mixed-Linkage Glucan Oligosaccharides Produced by Automated Glycan Assembly Serve as Tools to Determine the Substrate Specificity of Lichenase
Pietro Dallabernardina, Frank Schuhmacher, Peter H Seeberger, Fabian Pfrengle
Max-Planck-Institute of Colloids and Interfaces, Biomolecular Systems, Potsdam, Germany

Improving the throughput of batch photochemical reactions using flow: Dual photoredox and nickel catalysis in flow for C(sp²)–C(sp³) cross-coupling
Irini Abdiaj, Jesús Alcázar
Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75, 45007 Toledo, Spain

Synthesis of Cycloalkyl Substituted 7-Azaindoles via Photoredox Nickel Dual Catalytic Cross-Coupling in Batch and Continuous Flow
Natalie Palaychuk, Travis J. DeLano, Michael J. Boyd, Jeremy Green, and Upul K. Bandarage
Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.6b03223?journalCode=orlef7

Halogenation of organic compounds using continuous flow and microreactor technology
David Cantilloa and C. Oliver Kappeab*
* Corresponding authors
a Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, Austria
b Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
http://pubs.rsc.org/en/content/articlelanding/2017/re/c6re00186f/unauth#!divAbstract

Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis
Amruta Joshi-Pangu†, François Lévesque†, Hudson G. Roth‡, Steven F. Oliver†, Louis-Charles Campeau†, David Nicewicz‡, and Daniel A. DiRocco‡†
† Process Research & Development, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, United States
‡ Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
http://pubs.acs.org/doi/abs/10.1021/acs.joc.6b01240?journalCode=joceah

Application of the Photoredox Coupling of Trifluoroborates and Aryl Bromides to Analog Generation Using Continuous Flow
Travis J. DeLano, Upul K. Bandarage, Natalie Palaychuk, Jeremy Green, and Michael J. Boyd
Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
http://pubs.acs.org/doi/abs/10.1021/acs.joc.6b02408?journalCode=joceah

γ-Glutamyl-dipeptides: Easy tools to rapidly probe the stereoelectronic properties of the ionotropic glutamate receptor binding pocket
Lucia Tamborinia, Veronica Nicosiaa, Paola Conti, Federica Dall'Oglio, Carlo De Micheli, Birgitte Nielsen, Anders A. Jensen, Darryl S. Pickering, Andrea Pintob
a Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
b Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen ØE, Denmark

Expedited access to thieno[3,2-c]quinolin-4(5H)-ones and benzo[h]-1,6-naphthyridin-5(6H)-ones via a continuous flow photocyclization method
Y. Fang and G. K. Tranmer*ab
* Corresponding authors
A benchtop NMR spectrometer as a tool for monitoring mesoscale continuous-flow organic synthesis: equipment interface and assessment in four organic transformations
Cynthia M. Archambault and Nicholas E. Leadbeater*
* Corresponding authors
Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, USA

http://pubs.rsc.org/-/content/articlelanding/2016/ob/c6ob02279k#!divAbstract

BODIPY-based conjugated microporous polymers as reusable heterogeneous photosensitisers in a photochemical flow reactor
* Corresponding authors
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK

http://pubs.rsc.org/en/content/articlelanding/2016/py/c6py01393g#!divAbstract

Reformatsky and Blaise reactions in flow as a tool for drug discovery. One pot diversity oriented synthesis of valuable intermediates and heterocycles
L. Huck, M. Bertone, A. de la Hoz, A. Díaz-Ortiz and J. Alcázar*
* Corresponding authors
Janssen Research and Development, Janssen-Cilag, S.A., C/ Jarama 75, Toledo, Spain

Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain

http://pubs.rsc.org/en/content/articlelanding/2016/gc/c6gc02619b#!divAbstract

Visible light activation of Boronic Esters enables efficient photoredox C(sp²)–C(sp³) cross-couplings in flow
Fabio Lima, Dr. Mikhail A. Kabeshov, Dr. Duc N. Tran, Dr. Claudio Battilocchio, Dr. Joerg Sedelmeier, Dr. Gottfried Sedelmeier, Dr. Berthold Schenkel, Prof. Steven V. Ley*
* Corresponding authors
Department of Chemistry, University of Cambridge, Cambridge, UK

Novartis Pharma AG, Basel, Switzerland

Engineering chemistry: integrating batch and flow reactions on a single, automated reactor platform
D. E. Fitzpatrick and S. V. Ley*
* Corresponding authors
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

http://pubs.rsc.org/en/content/articlelanding/2016/re/c6re00160b#!divAbstract

Triphenylphosphine-grafted, RAFT-synthesised, porous monoliths as catalysts for Michael addition in flow synthesis
Kristine J. Barlow, Victor Bernabeu, Xiaojuan Hao, Timothy C. Hughes, Oliver E. Hutt, Anastasios Polyzos, Kathleen A. Turner, Graeme Moad*
* Corresponding authors
CSIRO Manufacturing Flagship, Bag 10, Clayton South, Victoria 3169, Australia

University of Melbourne, School of Chemistry, Parkville, Victoria 3010, Australia

http://dx.doi.org/10.1016/j.reactfunctpolym.2015.09.008

Ethyl Lithiodiazoacetate: Extremely Unstable Intermediate Handled Efficiently in Flow
Dr. Simon T. R. Müller, Tobias Hokamp, Svenja Ehrmann, Dr. Paul Hellier, Prof. Dr. Thomas Wirth
School of Chemistry, Cardiff University, Cardiff, UK

Pierre Fabre Médicament, Parc Industriel de la Chartreuse, Castres CEDEX, France

A facile hybrid ‘flow and batch’ access to substituted 3,4-dihydro-2H-benzo[b][1,4]oxazinones
Andrew J. S. Lin, Cecilia C. Russell, Jennifer R. Baker, Shelby L. Frailey, Jennette A. Sakoff and Adam McCluskey*
* Corresponding authors
Chemistry, Centre for Chemical Biology, School of Environmental & Life Sciences, University of Newcastle, University Drive, Callaghan, Australia
Continuous flow biocatalysis: production and in-line purification of amines by immobilised transaminase from *Halomonas elongata*
Matteo Planche, a Martina Letizia Contente, ab Jennifer Cassidy, a Francesco Molinari, b Lucia Tamborini c and Francesca Paradisi ad
* Corresponding authors
a UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
b Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli studi di Milano, Via Mangiagalli 25, Milan, Italy
c Department of Pharmaceutical Sciences (DISFARM), Università degli studi di Milano, Via Mangiagalli 25, Milan, Italy
d School of Chemistry, University of Nottingham, University Park, Nottingham, UK

A laboratory-scale continuous flow chlorine generator for organic synthesis
Franz J. Strauss a, David Cantillo ab, Javier Guerra c and C. Oliver Kappe ab
* Corresponding authors
a Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, Austria
b Research Center Pharmaceutical Engineering GmbH (RCPE), Infeldgasse 13, 8010 Graz, Austria
c Crystal Pharma, Gadea Pharmaceutical Group, A Division of AMRI, Parque Tecnológico de Boecillo, Valladolid, Spain

Continuous processing and efficient in situ reaction monitoring of a hypervalent iodine (III) mediated cyclopropanation using benchtop NMR spectroscopy
Batool Ahmed-Omer, Eric Sliwinski, John Paul Cerroti, Steven V Ley

Aryl amination using ligand-free Ni(II) salts and photoredox catalysis
Emily B. Corcoran 1, Michael T. Pirnot 2, Shishi Lin 3, Spencer D. Dreher 3, Daniel A. DiRocco 3, Ian W. Davies 3, Stephen L. Buchwald 2,* and David W. C. MacMillan 1,*
1 Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
2 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Department of Process Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA

Catalytic Chan-Lam coupling using a 'tube-in-tube' reactor to deliver molecular oxygen as an oxidant
Carl J. Mialla 1, Paul M. Burton 2, Alexander M. R. Smith 2, Gary C. Walter 2 and Ian R. Baxendale 1
1 Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
2 Syngenta CP R&D Chemistry, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom

An approach to the synthesis of 4-aryl and 5-aryl substituted thiazole-2(3H)-thiones employing flow processing
Monaem Baltia, Shelli A. Miller, Mohamed Lotfi Efrita and Nicholas E. Leadbeater
* Corresponding authors
a Université Tunis El Manar, Laboratory of Organic Synthesis and Heterocyclic Chemistry, Faculty of Science of Tunis, Department of Chemistry, 1060 Tunis, Tunisia
b Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, USA

Flow carbonylation of sterically hindered ortho-substituted iodoarenes
Carl J. Mialla 1, Gary C. Walter 2 and Ian R. Baxendale 1
1 Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
2 Syngenta CP R&D Chemistry, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom

Flow Chemistry Publications - 4 - www.vapourtec.co.uk/publications
Exploring flow procedures for diazonium formation
Te Hu, Ian R. Baxendale and Marcus Baumann*
*Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK
http://www.mdpi.com/1420-3049/21/7/918/htm

Catalytic macrocyclization strategies using continuous flow: formal total synthesis of ivorenolide A
Mylène de Léséleuc, Eric Godin, Shawn Parisien-Collette, Alexandre Levesque, and Shawn K. Collins*
*University of Montréal, Department of Chemistry, Montréal, Canada
http://pubs.acs.org/doi/abs/10.1021/acs.joc.6b01500

Delivering enhanced efficiency in the synthesis of α-diazosulfoxides by exploiting the process control enabled in flow
Patrick G. McCaw¹, Benjamin J. Deadman¹, Anita R. Maguire¹,², Stuart G. Collins¹
¹ Department of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
² Department of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland

Continuous-flow synthesis and derivatization of aziridines through palladium-catalyzed C(sp³)−H activation
Jacek Zakrzewski¹, Adam P. Smalley², Dr. Mikhail A. Kabeshov², Prof. Matthew J. Gaunt², Prof. Alexei A. Lapkin¹
¹ Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
² Chemistry Department, University of Cambridge, Cambridge, UK

Metal-free borylation of electron-rich aryl(pseudo)halides under continuous-flow photolytic conditions
* Corresponding authors
Kai Chen¹, Man Sing Cheungb, Zhenyang Lin*b and Pengfei Li*a
¹ Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST) and Frontier Institute of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, China
² Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
http://pubs.rsc.org/en/content/articlelanding/2016/qo/c6qo00109b#!divAbstract

Difluorocarbene addition to alkenes and alkynes in continuous flow
Pauline Rullière, Patrick Cyr, and André B. Charette*
Université de Montréal, Centre in Green Chemistry and Catalysis, Department of Chemistry, Faculty of Arts and Science, P.O. Box 6128, Station Downtown, Québec, Canada H3C 3J7
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.6b00573?journalCode=orlef7

A simple setup for transfer hydrogenations in flow chemistry
Matthew Hutchings, Thomas Wirth*
School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK

A scalable and operationally simple radical trifluoromethylation
Joel W. Beatty¹, James J. Douglas¹,², Kevin P. Cole², Corey R. J. Stephenson¹.
¹ Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
² Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
http://www.nature.com/ncomms/2015/150810/ncomms8919/full/ncomms8919.html

Photoactive and metal-free polyamide-based polymers for water and wastewater treatment under visible light irradiation
Junjie Shen¹, Roman Steinbacha, John Tobina, Mayumi Mouro Nakataa, Matthew Bowerb, Martin McCoustraa, Helen Bridae, Valeria Arrighia, Filipe Vilelaa
¹ School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
² Drinking Water Quality Regulator for Scotland, Edinburgh, EH6 6WW, United Kingdom

Biodiesel synthesis using integrated acid and base catalysis in continuous flow

Flow Chemistry Publications - 5 - www.vapourtec.co.uk/publications
Mousa Asadi, Joel F. Hooper, David W. Lupton
School of Chemistry, Monash University, Clayton 3800, Victoria, Australia

The generation of a library of bromodomain-containing protein modulators expedited by continuous flow synthesis
Paolo Filipponi and Ian R. Baxendale*
Department of Chemistry, University of Durham South Road, Durham, DH1 3LE, United Kingdom

An efficient etherification of Ginkgo biloba extracts with fewer side effects in a micro-flow system
Yin-Lin Qin*, Wei He*, Mei Su†, Zheng Fang‡, Ping-Kai Ouyang*, Kai Guo†,‡
† College of Biotechnology and Pharmaceutical Engineering, Nanjing Technology University, Nanjing 210009, China
‡ Jiangsu Carephar Pharmaceutical Co., Ltd., Nanjing 210014, China

Fine chemical syntheses under flow using SiliaCat catalysts
Rosaria Ciriminna,a Valerica Pandarus,b François Béland* and Mario Pagliaro*a
*a Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
b SiliCycle, 2500, Parc-Technologique Blvd, Québec, G1P 4S6 Canada

http://pubs.rsc.org/en/content/articlelanding/2016/cy/c6cy00038j#!divAbstract

Continuous-flow synthesis of 2H-azirines and their diastereoselective transformation to aziridines
Marcus Baumann*, Ian R. Baxendale
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK

http://community.dur.ac.uk/i.r.baxendale/papers/Synlett2016.27.159.pdf

Continuous flow magnesiation or zincation of acrylonitriles, acrylates, and nitroolefins. Application to the synthesis of butenolides
Maximilian A. Ganiek, Matthias R. Becker, Marthe Ketels, and Paul Knochel*
Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich, Germany

http://pubs.acs.org/doi/abs/10.1021/acs.orglett.6b00086

Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor
James Gardiner*, Christian H. Hornung*, John Tsanaktsidis*, Duncan Guthrie†
†CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
‡ Vapourtec Ltd, Park Farm Business Centre, Bury St Edmunds IP28 6TS, United Kingdom

Continuous-flow photochemistry: a need for chemical engineering
Karine Loubièrea,b, Michael Oelgemöller*, Tristan Ailleta,b, Odile Dechy-Cabaret*a,d, Laurent Prat*a,b
a CNRS, Laboratoire de Génie Chimique (LGC UMR 5503), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
b Université de Toulouse, INPT, ENSIACET, F-31432 Toulouse, France
c James Cook University, College of Science, Technology and Engineering, Townsville, Queensland 4811, Australia
d CNRS, Laboratoire de Chimie de Coordination (LCC UPR 8241), 205 route de Narbonne, BP 44099, F-31077 Toulouse, France

Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions†
Kai Chen, Shuai Zhang, Pei He and Pengfei Li*
Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, 99 Yanxiang Road, Xi’an, Shaanxi 710054, China

http://pubs.rsc.org/en/content/articlehtml/2016/sc/c5sc04521e

Continuous flow photochemistry as an enabling synthetic technology: synthesis of substituted-6(5H)-phenanthridinones for use as poly (ADP-ribose) polymerase inhibitors
Y. Fang and G. K. Tranmer*ab

Continuous-flow synthesisa of 2H-azirines and their diastereoselective transformation to aziridines
Marcus Baumann*, Ian R. Baxendale
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK
http://community.dur.ac.uk/i.r.baxendale/papers/Synlett2016.27.159.pdf

Continuous flow magnesiation or zincation of acrylonitriles, acrylates, and nitroolefins. Application to the synthesis of butenolides
Maximilian A. Ganiek, Matthias R. Becker, Marthe Ketels, and Paul Knochel*
Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 Munich, Germany
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.6b00086

Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor
James Gardiner*, Christian H. Hornung*, John Tsanaktsidis*, Duncan Guthrie†
†CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
‡ Vapourtec Ltd, Park Farm Business Centre, Bury St Edmunds IP28 6TS, United Kingdom

Continuous-flow photochemistry: a need for chemical engineering
Karine Loubièrea,b, Michael Oelgemöller*, Tristan Ailleta,b, Odile Dechy-Cabaret*a,d, Laurent Prat*a,b
a CNRS, Laboratoire de Génie Chimique (LGC UMR 5503), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
b Université de Toulouse, INPT, ENSIACET, F-31432 Toulouse, France
c James Cook University, College of Science, Technology and Engineering, Townsville, Queensland 4811, Australia
d CNRS, Laboratoire de Chimie de Coordination (LCC UPR 8241), 205 route de Narbonne, BP 44099, F-31077 Toulouse, France

Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions†
Kai Chen, Shuai Zhang, Pei He and Pengfei Li*
Center for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, 99 Yanxiang Road, Xi’an, Shaanxi 710054, China

http://pubs.rsc.org/en/content/articlehtml/2016/sc/c5sc04521e

Continuous flow photochemistry as an enabling synthetic technology: synthesis of substituted-6(5H)-phenanthridinones for use as poly (ADP-ribose) polymerase inhibitors
Y. Fang and G. K. Tranmer*ab
Controlled generation and use of CO in flow†‡
Steffen V. F. Hansen ab, Zoe E. Wilson a, Trond Ulven *b and Steven V. Ley *a

a Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK.
b Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.

The solid copper-mediated C-N cross-coupling of phenylboronic acids under continuous flow conditions
Jennifer Baoa, Geoffrey K. Tranmera, b,
a College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
b Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow†
Javier Guerra ab, David Cantillo a and C. Oliver Kappe **a
a Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.
b Crystal Pharma, Gadea Pharmaceutical Group, a division of AMRI, Parque Tecnológico de Boecillo, Valladolid, 47151, Spain

Integrating multicomponent flow synthesis and computational approaches for the generation of a tetrahydroquinoline compound based library
Bruno Cerra,a Serena Mostarda,a Chiara Custodi,a Antonio Macchiaruoloa and Antimo Gioiello*a
a Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy

The expanding utility of continuous flow hydrogenation
Peter J. Cossar,a Lacey Hizartzidis,a Michela I. Simone,a Adam McCluskey**a and Christopher P. Gordon*ab
*Corresponding authors
a Centre for Chemical Biology, Chemistry Building, School of Environmental and Life Science, The University of Newcastle, University Drive, Callaghan, Australia
b Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Locked Bag, Penrith, Australia

Highly efficient and safe procedure for the synthesis of aryl 1,2,3-triazoles from aromatic amine in a continuous flow reactor
Federica Stazi , Damiano Cancognia, Lucilla Turcob, Pieter Westerduina, Sergio Bacchia,a GlaxoSmithKline Spa, Chemical Development Department, Synthetic Chemistry, Via Fleming 4, 37135 Verona, Italy
b GlaxoSmithKline Spa, Analytical Chemistry, Via Fleming 4, 37135 Verona, Italy

Studies of a diastereoselective electrophilic fluorination reaction employing a cryo-flow reactor
Keiji Nakayama,a Duncan L. Browneb, Ian R. Baxendale,h,1 Steven V. Leyb
a Process Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo, Shinomiya, Hiratsuka, Kanagawa, 254-0014, Japan
b Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

The changing face of organic synthesis
Authors: Ley, Steven V.; Baxendale, Ian R.
A novel internet-based reaction monitoring, control and autonomous self-optimization platform for chemical synthesis
Daniel E. Fitzpatrick†, Claudio Battilocchio‡, and Steven V. Ley†
† Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Thermolysis of 1,3-dioxin-4-ones: fast generation of kinetic data using in-line analysis under flow
Thomas Durand,a Cyril Henry,a David Bolien,a David C. Harrowven,a Sally Bloodworth,a Xavier Franckb and Richard J. Whitby,a
a Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
b Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France

Continuous heterogeneous catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactor
Achilleas Constantinou†¶, Gaowei Wu†, Albert Corredera†, Peter Ellis‡, Donald Bethell§, Graham J. Hutchings∥, Simon Kuhn⊥, and Asterios Gavrilidis†
† Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
¶ Division of Chemical and Petroleum Engineering, School of Engineering, London South Bank University, London, SE1 0AA, United Kingdom
‡ Johnson Matthey, Blounts Court Road, Reading, RG4 9NH, United Kingdom
§ Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
∥ School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
⊥ Department of Chemical Engineering, KU Leuven, B. de Croylaan 46, 3001 Leuven, Belgium

Automated glycan assembly of xyloglucan oligosaccharides
Pietro Dallabernardina,ab Frank Schuhmacher,ab Peter H. Seebergerab and Fabian Pfrengleab
a Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
b Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany

Continuous flow Buchwald–Hartwig amination of a pharmaceutical intermediate†
Polina Yaseneva a, Paul Hodgson a, Jacek Zakrzewski a, Sebastian Falß b, Rebecca E. Meadows c and Alexei A. Lapkin a
a Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK. E-mail: aal35@cam.ac.uk; Fax: +44 (0)1223 334796
b INVITE GmbH, Chempark Leverkusen, 51373 Leverkusen, Germany
c Pharmaceutical Development, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, UK

An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides
Paolo Zambellia, Lucia Tamborinib, , Samuele Cazzamallib, Andrea Pintoa, Stefania Arioli, Silvia Balzarettia, Francisco J. Plou, Lucia Fernandez-Arroc, Francesco Molinaroa, Paola Contib, Diego Romanoa, ,
a Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli, 20133 Milan, Italy
b Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
c Instituto de Catálisis y Petroquímica, CSIC, 28049 Madrid, Spain

Dynamic flow synthesis of porous organic cages
Michael E. Briggs,a Anna G. Slater,a Neil Lunt,a Shan Jiang,a Marc A. Little,a Rebecca L. Greenaway,a Tom Hasell,a Claudio Battilocchio,b Steven V. Leyb and Andrew I. Cooper,a
a Department of Chemistry and Centre for Materials Discovery, University of Liverpool, Crown Street, Liverpool, UK
b Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK

Flow Chemistry Publications - 8 - www.vapourtec.co.uk/publications
Continuous photochemistry: the flow synthesis of ibuprofen via a photo-Favorskii rearrangement
M. Baumanna and Ian R. Baxendaleaa
Department of Chemistry, University of Durham, South Road, Durham, UK
http://pubs.rsc.org/en/content/articlelanding/2016/re/c5re00037h/unauth#!divAbstract

Making ends meet: flow synthesis as the answer to reproducible high-performance conjugated polymers on the scale that roll-to-roll processing demands
Martin Helgesen, Jon E. Carlé, Gisele A. dos Reis Benatto, Roar R. Søndergaard, Mikkel Jørgensen, Eva Bundgaard, Frederik C. Krebs
Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark

Amination of aryl halides and esters using intensified continuous flow processing
Thomas M. Kohl*, Christian H. Hornung and John Tsanaktsidis
CSIRO Manufacturing Flagship, Bag 10, Clayton South, Victoria 3169, Australia
http://www.mdpi.com/1420-3049/20/10/17860/htm

Light-induced C-H arylation of (hetero)arenes by in situ generated diazo anhydrides
Dr. David Cantillo1, Dr. Carlos Mateos2, Dr. Juan A. Rincon2, Dr. Oscar de Frutos2,3 and Prof. Dr. C. Oliver Kappe1,*
1 Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz (Austria)
2 Centro de Investigación Lilly S. A. Avda. de la Industria 30, 28108 Alcobendas-Madrid (Spain)

Photodecarboxylative benzylation of N-methoxyphthalimide under batch and continuous-flow conditions
A James Cook University, College of Science, Technology and Engineering, Townsville, Qld 4811, Australia.
B Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517836883, Iran.
C Institut für Organische Chemie, Universität Regensburg, Universitätstr. 31, D-93053 Regensburg, Germany.
D Australian Institute of Marine Science (AIMS), Biomolecular Analysis Facility, Townsville, Qld 4810, Australia.
E Corresponding author.

A short multi-step flow synthesis of a potential spirocyclic fragrance component
Ian R. Baxendale
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK

Flow synthesis of 2-methylpyrirdines via α-methylation
Camille Manansala 1 and Geoffrey K. Tranmer 1,2,*
1 College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
2 Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

The development of a short route to the API ropinirole hydrochloride
Zeshan Yousuf, Andrew K. Richards, Andrew N. Dwyer, Bruno Linclau and David C. Harrowvena
a Chemistry, University of Southampton, Highfield, Southampton, UK
b GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
c Formally at GlaxoSmithKline Innovation and Sustainable Manufacturing COE, Worthing, UK

A practical deca-gram scale ring expansion of (R)-(−)-carvone to (R)-(+)−3-methyl-6-isopropenyl-cyclohept-3-
A flow-based synthesis of telmisartan
Alex Martin, Ali Siamaki, Katherine Belecki, B. Gupton
Department of Chemistry and Department of Chemical and Life Science Engineering Virginia Commonwealth University 601 W. Main St. Richmond Virginia 23284 United States

Two-stage flow synthesis of coumarin via O-acetylation of salicylaldehyde
Xin Li1, Anbang Chen1, Yangzhi Zhou1, Lingling Huang2, Zheng Fang1, Hai Feng Gan1, Kai Guo1
1 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China
2 School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China

The preparation of ethyl levulinate facilitated by flow processing: the catalyzed and uncatalyzed esterification of levulinic acid
Meghan P. Negus1, Andrew C. Mansfield2, Nicholas E. Leadbeater1
1 Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States
2 Vapourtec Ltd., Park Farm Business Centre, Bury St. Edmunds IP28 6TS, United Kingdom

Photodecarboxylations in an advanced meso-scale continuous flow photoreactor
Sam Josland1, Saira Mumtaz2 and Michael Oelgemöller2,*
1 University of Southampton, Department of Chemistry, University Road, Southampton, SO17 1BJ, United Kingdom
2 James Cook University, College of Science, Technology and Engineering, Townsville, QLD 4811, Australia

Flow alkylation of thiols, phenols, and amines using a heterogeneous base in a packed-bed reactor
Alastair Baker1, Michael Graz2, Robert Saunders2, Gareth J. S. Evans2, Ilaria Pilotti1, Thomas Wirth1
1 School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
2 Neem Biotech, Willowbrook Technical Units, Llandogo Road, St. Mellons, Cardiff CF3 0EF, UK

Generation and trapping of ketenes in flow
Cyril Henry1, David Bolien1, Bogdan Ibanescu1, Sally Bloodworth1, David C. Harrowven1, Xunli Zhang2, Andy Craven3, Helen F. Sneddon3, Richard J. Whitby1,*
1 Chemistry, University of Southampton, Southampton, HANTS, SO17 1BJ, UK,
2 Bioengineering Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, HANTS, SO17 1BJ, UK
3 GlaxoSmithKline R&D Ltd., Medicines Research Centre, Gunnels Wood Road, Stevenage, HERTS, SG1 2NY, UK

A concise flow synthesis of efavirenz†
Dr. Camille A. Correia1, Dr. Kerry Gilmore1, Prof. Dr. D. Tyler McQuade1 and Prof. Dr. Peter H. Seeberger1,2,*
1 Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)
2 Institute for Chemistry and Biochemistry, Freie Universität Berlin, Amimallee 22, 14195 Berlin (Germany)

A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions
Maria
Development of a flow method for the hydroboration/oxidation of olefins
José A. Souto,*1,2 Robert A. Stockman3 Steven V. Ley1
1 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
2 Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avd. Camilo José Cela, 10, 13071 Ciudad Real, Spain
3 School of Chemistry, University of Nottingham, Nottingham, UK

Reevaluation of the 2-nitrobenzyl protecting group for nitrogen containing compounds: an application of flow photochemistry
Chloe I. Wendell, Michael J. Boyd
Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, MA, United States

Flow synthesis of ethyl isocyanoacetate enabling the telescoped synthesis of 1,2,4-triazoles and pyrrolo-[1,2-c]pyrimidines
Marcus Baumann,1 Antonio M. Rodriguez Garcia1,2 Ian R. Baxendale*1
1 Department of Chemistry, Durham University, South Road, Durham, UK
2 Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avd. Camilo José Cela, 10, 13071 Ciudad Real, Spain

Heterogenization of Pd–NHC complexes onto a silica support and their application in Suzuki–Miyaura coupling under batch and continuous flow conditions
Alberto Martínez,1 Jamin L. Krinsky,1 Itziar Peñafiel,1 Sergio Castillón,2 Konstantin Loponov,3 Alexei Lapkin,3 Cyril Godard*1 Carmen Claver*1
1 Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, Tarragona, Spain
2 Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, Tarragona, Spain
3 Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museum

The direct α-C(sp3)–H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processing
Martin Brzozowski Jose A. ForniG. Paul Savage Anastasios Polyzos
CSIRO Manufacturing Flagship, Bayview Avenue, Clayton 3168, Australia

Efficient continuous-flow synthesis of macrocyclic triazoles
Anne-Catherine Bédard Jeffrey Santandrea Shawn Collins
Department of Chemistry and Centre for Green Chemistry and Catalysis, University of Montreal

Factors Influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen
Dr. Dmitry B. Ushakov 1,†, Matthew B. Plutschack 1,†, Dr. Kerry Gilmore1,‡ and Prof. Dr. Peter H. Seeberger 1.
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany)

Glucuronidation of bile acids under flow conditions: design of experiments and Koenigs–Knorr reaction optimization
Serena Mostarda, a Paolo Filipponi, a Roccaldo Sardella, a Francesco Venturoni, a Benedetto Natalini, a Roberto

Flow Chemistry Publications - 11 - www.vapourtec.co.uk/publications
Electroactive and photoactive poly[6isoindigo-alt-EDOT] synthesized using direct (hetero)arylation polymerization in batch and in continuous flow
François Grenier,† Badrou Réda Aïch,†,‡ Yu-Ying Lai,§ Maxime Guérette,† Andrew B. Holmes,§ Ye Tao,‡ Wallace W. H. Wong,*§ and Mario Leclerc*,†
†Département de Chimie, Université Laval, Québec City, QC G1V 0A6, Canada
‡Information and Communications Technologies Portfolio, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
§School of Chemistry, Bio21 Institute, the University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
http://pubs.rsc.org/en/content/articlelanding/2014/ob/c4ob01911c#!divAbstract

Continuous reductions and reductive aminations using solid NaBH₄
Kerry Gilmore †, Stella Vukelić ‡, D. Tyler McQuade †§, Beate Koksch †, and Peter H. Seeberger ††
† Max Planck Institute of Colloids and Interfaces, Freie Universität Berlin, Germany
‡ Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
§ Department of Chemistry and Biochemistry, Florida State University, United States
http://dx.doi.org/10.1021/op500310s

Versatile, high quality and scalable continuous flow production of metal-organic frameworks
Marta Rubio-Martinez, Michael P. Batten, Anastasios Polyzos, Keri-Constanti Carey, James I. Mardel, Kok-Seng Lim & Matthew R. Hill
CSIRO Materials Science and Engineering, Australia
http://dx.doi.org/10.1038/srep05443

Flow synthesis and biological activity of aryl sulphonamides as selective carbonic anhydrase IX and XII inhibitors
Emiliano Rosatelli a, Andrea Carotti a, Mariangela Ceruso b, Claudiu T. Supuran c, Antimo Gioiello a,*
a Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia I-06123, Italy
b Laboratory of Bioinorganic Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (Firenze) I-50019, Italy
c Neurofarba Dept., Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino (Firenze) I-50019, Italy

Facilitating biomimetic syntheses of borrerine derived alkaloids by means of flow-chemical methods.
Sonja B. Kamptmann & and Steven V. Ley
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
http://dx.doi.org/10.1071/CH14530

Synthesis of a carprofen analogue using a continuous flow UV-reactor
Antoine Caron , Augusto C. Hernandez-Perez , and Shawn K. Collins *
Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, Québec, Canada.
http://dx.doi.org/10.1021/op5002148

Continuous synthesis of organozinc halides coupled to negishi reactions
Nerea Alonso2,3, L. Zane Miller1, Juan de M. Muñoz2, Jesus Alcázar2,* and D. Tyler McQuade1,*
1Department of Chemistry and Biochemistry, Florida State University, USA
2Janssen Research and Development, Janssen-Cilag, Toledo, Spain

Flow Chemistry Publications - 12 - www.vapourtec.co.uk/publications
Efficient synthesis of panaxadiol derivatives using continuous-flow microreactor and evaluation of anti-tumor activity
Yan Wu¹, Wei-Qi Chen², Yu-Qing Zhao³, Hu-Ri Piao⁴
¹ Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, China
² Department of Chemistry, Fudan University, Shanghai, China
³ School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
http://dx.doi.org/10.1016/j.cclet.2014.11.03

Continuous flow magnesiation of functionalized heterocycles and acrylates with TMPMgCl-LiCl
Dr. Trine P. Petersen, Matthias R. Becker and Prof. Dr. Paul Knochel*
Ludwig-Maximilians-Universität München, Department Chemie, München, Germany
http://dx.doi.org/10.1002/anie.201404221

A continuous-flow approach to 3,3,3-trifluoromethylpropenes: bringing together Grignard addition, Peterson elimination, inline extraction, and solvent switching
Trevor A. Hamlin †, Gillian M. L. Lazarus †, Christopher B. Kelly †, and Nicholas E. More
†‡
† Department of Chemistry, University of Connecticut, United States
‡ Department of Community Medicine & Health Care, University of Connecticut Health Center, United States
http://dx.doi.org/10.1021/op500190j

First example of alkyl-aryl Negishi cross-coupling in flow: mild, efficient and clean introduction of functionalized alkyl groups
Brecht Egle², Juan de Muñoz¹, Nerea Alonso¹, Wim M. De Borggraeve², Antonio de la Hoz³, Angel Díaz-Ortiz², Jesús Alcázar¹
¹Janssen Research and Development Department of Medicinal Chemistry Janssen-Cilag, Toledo Spain
²Department of Chemistry, Molecular Design and Synthesis University of Leuven, Heverlee Belgium
³Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas, Spain
http://dx.doi.org/10.1556/JFC-D-13-00009

A general continuous flow method for palladium catalysed carbonylation reactions using single and multiple tube-in-tube gas-liquid microreactors
Ulrike Gross¹, Peter Koos¹, Matthew O’Brien²,³, Anastasios Polyzos¹,³ and Steven V. Ley¹
¹Whiffin Laboratory, Department of Chemistry, University of Cambridge, Cambridge, UK
²School of Physical and Geographical Sciences, Keele University, Staffordshire, UK
³CSIRO, Materials Science and Engineering, Clayton South, Australia
http://dx.doi.org/10.1002/ejoc.201402804

Flow chemistry meets advanced functional materials
Dr. Rebecca M. Myers, Daniel E. Fitzpatrick, Dr. Richard M. Turner and Prof. Steven V. Ley*
Department of Chemistry, University of Cambridge, Cambridge, UK
http://dx.doi.org/10.1002/chem.201402801

The rapid synthesis of oxazolines and their heterogeneous oxidation to oxazoles under flow conditions
Steffen Glöckner, Duc N. Tran, Richard J. Ingham, Sabine Fenner, Zoe E. Wilson, Claudio Battilocchio and Steven V. Ley*
http://dx.doi.org/10.1002/chem.201402074
First example of a continuous-flow carboalnylation reaction using aryl formates as CO precursors
Nerea Alonso¹-³, Juan de Muñoz¹, Brecht Egle², Johannes L. Vrijdag², Wim M. De Borggraewe², Antonio de la Hoz³, Angel Díaz-Ortiz³, Jesús Alcázar¹
¹Janssen Research and Development, Janssen-Cilag Department of Medicinal Chemistry S.A., Toledo, Spain
²Molecular Design and Synthesis University of Leuven, Department of Chemistry, Heverlee Belgium
³Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas Real, Spain

Glycosylation with N-acetyl glycosamine donors using catalytic iron(III) trflate: from microwave batch chemistry to a scalable continuous-flow process
Amandine Xolin,a Arnaud Stévenin,a Mathieu Pucheault,b Stéphanie Norsikian,a François-Didier Boyer*a and Jean-Marie Beau*ad
a Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
b Institut des Sciences Moléculaires, CNRS-Université de Bordeaux, Talence, France
c Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
d Université Paris-Sud and CNRS, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux, Orsay, France

The generation of a library of bromodomain-containing protein modulators expedited by continuous flow synthesis
Paolo Filipponi a and Ian R. Baxendale *a
Department of Chemistry, University of Durham South Road, Durham, DH1 3LE, United Kingdom

An efficient etherification of Ginkgo biloba extracts with fewer side effects in a micro-flow system
Yin-Lin Qin*, Wei He*, Mei Su*, Zheng Fang*, Ping-Kai Ouyang*, Kai Guo*a,d,
a College of Biotechnology and Pharmaceutical Engineering, Nanjing Technology University, Nanjing 210009, China
b Jiangsu Carephar Pharmaceutical Co., Ltd., Nanjing 210014, China
c School of Pharmaceutical, Nanjing Technology University, Nanjing 210009, China
d State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Technology University, Nanjing 211816, China

Continuous flow synthesis of thieno[2,3-c]isoquinolin-5(4H)-one scaffold: a valuable source of PARP-1 inhibitors
Paolo Filipponi †, Carmine Ostacolo ‡, Ettore Novellino †, Roberto Pelliccioni †‡, and Antimo Gioiello †
† Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, I-06123 Perugia, Italy
‡ Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Napoli, Italy
$ TES Pharma S.r.l., Corciano (Perugia), Italy

Regioselective synthesis of 3-aminoimidazo[1,2-a]-pyrimidines under continuous flow conditions
Ashlie J. E. Butler , Mark J. Thompson , Patrick J. Maydom , James A. Newby , Kai Guo , Harry Adams , and Beining Chen
Department of Chemistry, University of Sheffield, Sheffield, U.K.

Microwave irradiation and flow chemistry for a straightforward synthesis of piano-stool iron complexes
Anastassiya Pagnoux-Ozherelyeva*, David Bolienb, Sylvain Gaillard*, Flavie Peudrua, Jean-François Lohier*, Richard J. Whitby*, Jean-Luc Renauda
a Normandie University, University of Caen Basse Normandie, Laboratoire de Chimie Moléculaire et Thioorganique, CNRS, Caen, France
b Chemistry, University of Southampton, Southampton, UK

Continuous flow macrocyclization at high concentrations: synthesis of macrocyclic lipids
Anne-Catherine Bédard, Sophie Régnier and Shawn K. Collins
Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Montréal, Canada
Continuous synthesis of artemisinin-derived medicines
Kerry Gilmore,a Daniel Kopetzki,a Ju Weon Lee,a Zoltan Horvath,b D. Tyler McQuade,a Andreas Seidel-Morgenstern,b,c and Peter H. Seeberger,a,d
a Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Germany
b Max-Planck-Institute for Dynamics of Complex Technical Systems, Germany
c Otto-von-Guericke-University, Chair for Chemical Process Technology, Germany
d Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany

Consecutive oxygen-based oxidations convert amines to α-cyanoepoxides
Dmitry B. Ushakov,a Kerry Gilmore,*a and Peter H. Seeberger*a,b
a Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
b Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany

Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen
Dmitry B. Ushakov, Kerry Gilmore, Daniel Kopetzki, D. Tyler McQuade, and Peter H. Seeberger
1Department für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, Germany
2Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
3Department of Chemistry and Biochemistry, Florida State University, Tallahassee, USA

Flow synthesis of a versatile fructosamine mimic and quenching studies of a fructose transport probe
Matthew B. Plutschack1,2, D. Tyler McQuade1,2, Giulio Valenti2 and Peter H. Seeberger2
1Department of Chemistry and Biochemistry, Florida State University, USA
2Max Planck Institute of Colloids and Interfaces, Germany

Synthesis of all four stereoisomers of 3-(tert-Butoxy carbonyl)-3-azabicyclo[3.1.0]hexane-2-carboxylic acid
Bettina Bakonyi †, Markus Furegati *, Christian Kramer §, Luigi La Vecchia †, and Flavio Ossola ‡
† Doetsch Grether AG, Falkensteinstrasse 37, 4132 Muttenz, Switzerland
‡ Preparations Laboratories, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Klybeckstrasse 141, 4057 Basel, Switzerland
§ Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria

Seamless integration of dose-response screening and flow chemistry: efficient generation of structure–activity relationship data of β-Secretase (BACE1) inhibitors
Dr. Michael Werner1, Christoph Kuratli1, Dr. Rainer E. Martin1, Dr. Remo Hochstrasser1, David Wechsler1, Dr. Thilo Enderle1, Dr. Alexander I. Alaine* and Prof. Dr. Horst Vogel2
1 Medicinal Chemistry, Small Molecule Research, Pharma Research & Early Development (pRED), F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel (Switzerland)
2 Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne (EPFL), Station 6, 1015 Lausanne (Switzerland)

Controlled synthesis of poly(3-hexylthiophene) in continuous flow
Helga Seyler, Jegadesan Subbiah, David J. Jones, Andrew B. Holmes and Wallace W. H. Wong*
School of Chemistry, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia

Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide
Richard J. Ingham1, Claudio Battilocchio1, Joel M. Hawkins2 and Steven V. Ley1
1Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW,
Sequential flow process for the controlled polymerisation and thermolysis of RAFT-synthesised polymers

CH Hornung, A Postma, S Saubern, J Chiefari
CSIRO Materials Science and Engineering, Victoria, Australia

http://dx.doi.org/10.1016/j.polymer.2014.01.023

Robust and reusable supported palladium catalysts for cross-coupling reactions in flow

William R. Reynolds,ab Pawel Plucinskibc and Christopher G. Frostab
* Corresponding authors
a Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, UK
b Department of Chemistry, University of Bath, Claverton Down, Bath, UK
c Department of Chemical Engineering, University of Bath, Claverton Down, Bath, UK

http://dx.doi.org/10.1039/C3CY00836C

Investigating the continuous synthesis of a nicotinonitrile precursor to nevirapine

Ashley R. Longstreet1, Suzanne M. Opalka1, Brian S. Campbell1, B. Frank Gupton2, Tyler McQuade1
1Department of Chemistry and Biochemistry, Florida State University, United States
2Department of Chemistry, Virginia Commonwealth University, United States

http://dx.doi.org/10.3762/bjoc.10.56

Porous, functional, poly(styrene-co-divinylbenzene) monoliths by RAFT polymerization

Kristine J. Barlow (née Tan), Xiaojuan Hao, Timothy C. Hughes, Oliver E. Hutt, Anastasios Polyzos, Kathleen A. Turner, Graeme Moad
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science & Engineering, Australia

http://dx.doi.org/10.1002/chem.201102263

New insights into cyclobutenone rearrangements: a total synthesis of the natural ROS-generating anti-cancer agent cribrostatin 6†

Mubina Mohamed1, Théo P. Gonçalves1, Prof. Richard J. Whitby1, Dr. Helen F. Sneddon2, Prof. David C. Harrowven1
1Chemistry, University of Southampton, UK
2GlaxoSmithKline Medicines Research Centre, UK

http://dx.doi.org/10.3762/bjoc.9.207

Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

Nida Ambreen, Ravi Kumar and Thomas Wirth
Cardiff University, School of Chemistry, Park Place, Cardiff, UK

http://dx.doi.org/10.3762/bjoc.9.162

The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow

Kimberley A. Roper1, Malcolm B. Berry2 and Steven V. Ley1
1Innovative Technology Centre, Department of Chemistry, University of Cambridge, U.K.
2GlaxoSmithKline, Stevenage, U.K.

http://dx.doi.org/10.3762/bjoc.9.207

Flow-based, cerium oxide enhanced, low-level palladium sonogashira and heck coupling reactions by perovskite catalysts

Claudio Battilocchio1, Benjamin N. Bhawal1, Rajeev Chorghade1, Benjamin J. Deadman1, Joel M. Hawkins2, Steven V. Ley1
1Innovative Technology Centre, Department of Chemistry, University of Cambridge, UK
2Pfizer Worldwide Research & Development, Groton, USA

http://dx.doi.org/10.1002/ijch.201300049
The fit for purpose development of S1P1 receptor agonist GSK2263167 using a Robinson annulation and Saegusa oxidation to access an advanced phenol intermediate
Robert M. Harris, Benjamin I. Andrews, Stacy Clark, Jason W. B. Cooke, John C. S. Gray, and Stephanie Q. Q. Ng
Chemical Development, GlaxoSmithKline Research and Development Ltd., UK
http://dx.doi.org/10.1021/op400162p

Raman spectroscopy as a tool for monitoring mesoscale continuous-flow organic synthesis: Equipment interface and assessment in four medicinally-relevant reactions
Trevor A. Hamlin and Nicholas E. Leadbeater
Department of Chemistry, University of Connecticut, USA
http://dx.doi.org/10.3762/bjoc.9.215

Biotransformation with whole microbial systems in a continuous flow reactor: resolution of (RS)-flurbiprofen using Aspergillus oryzae by direct esterification with ethanol in organic solvent
Lucia Tamborinia, Diego Romanoa, Andrea Pintoa, Martina Contentea, Maria C. Iannuzzib, Paola Contia, Francesco Molinib
a Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
b Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DEFENS), Università degli Studi di Milano, Italy
http://dx.doi.org/10.1016/j.tetlet.2013.08.119

Continuous flow synthesis of Coumarin
Anbang Chen1, Xin Li1, Yangzhi Zhou1, Lingling Huang2, Zheng Fang2, Haifeng Gan1 and Kai Guo1,
1 College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology
2 School of Pharmaceutical Sciences, Nanjing University of Technology
http://dx.doi.org/10.4028/www.scientific.net/AMR.781-784.936

Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen
Philip R D Murray 1, Duncan L Browne 1, Julio C Pastre 1,2, Chris Butters 3, Duncan Guthrie 3, Steven V Ley 1
1 Department of Chemistry, University of Cambridge, UK
2 Instituto de Química, University of Campinas, Brazil.
3 Vapourtec Ltd, UK
http://dx.doi.org/10.1021/op4001548

Integrated synthesis and testing of substituted xanthine based DPP4 inhibitors: application to drug discovery
Werngard Czechtizky 1, Jürgen Dedio 1, Bimbisar Desai 2, Karen Dixon 2, Elizabeth Farrant 2, Qixing Feng 2, Trevor Morgan 2, David M. Parry 2, Manoj K. Ramjee 2, Christopher N. Selway 2, Thorsten Schmidt 1, Gary J. Tarver 2*
1 Sanofi-Aventis.
2 Cyclofluidic Ltd.
http://dx.doi.org/10.1021/ml400171b

Applying flow chemistry: methods, materials, and multistep synthesis
D. Tyler McQuade 1,3, Peter H. Seeberger 1,2
1 Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces
2 Institute for Chemistry and Biochemistry, Freie Universität Berlin,
3 Department of Chemistry and Biochemistry, Florida State University
http://dx.doi.org/10.1021/jo400583m

Controlled synthesis of poly(3-hexylthiophene) in continuous flow
Helga Seyler, Jegadesan Subbiah, David J. Jones, Andrew B. Holmes and Wallace W. H. Wong
School of Chemistry, Bio21 Institute, University of Melbourne
http://dx.doi.org/10.3762/bjoc.9.170

Building a sulfonamide library by eco-friendly flow synthesis
Antimo Gioiello,* Emiliano Rosatelli, Michela Teofrasti, Paolo Filipponi, and Roberto Pellicciari
Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo, 1, 06123 Perugia, Italy.
http://pubs.acs.org/doi/abs/10.1021/co400012m

The rapid generation of isocyanates in flow
Marcus Baumann, Ian R. Baxendale
Continuous synthesis of pyridocarbazoles and initial photophysical and bioprobe characterization

D. Tyler McQuade**,ab, Alexander G. O’Briena, Markus Dörrc, Rajathees Rajaratnamc, Ursula Eisoldd, Bobanna Monnandta, Tomoya Nobutag, Hans-Gerd Löhmansröben, Eric Meggersb, Peter H. Seebergeb**

a Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces
b Department of Chemistry and Biochemistry, Florida State University
c Fachbereich Chemie, Philipps-Universität Marburg
d Potsdam Institut für Chemie
e Freie Universität Berlin

Microwave heating and conventionally-heated continuous-flow processing as tools for performing cleaner palladium-catalyzed decarboxylative couplings using oxygen as the oxidant – a proof of principle study

Nicholas Leadbeater 1, DiAndra M. Rudzinski 1

1 Department of Chemistry, University of Connecticut.

Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform

Bimbisar Desai†, Karen Dixon†, Elizabeth Farrant‡, Qixing Feng‡, Carl R. Gibson‡, Willem P. van Hoorn§, James Mills‡, Trevor Morgan‡, David M. Parry‡, Manoj K. Ramjeet‡, Christopher N. Selway†, Gary J. Tarver†, Gavin Whitlock†, and Adrian G. Wright†

† Cyclofluidic Ltd, Biopark, Broadwater Road, Welwyn Garden City, AL7 3AX, U.K.
‡ Sandexis LLP, Discovery Park, Sandwich, Kent CT13 9ND, U.K.
§ Accelrys Ltd, 334 Cambridge Science Park, Cambridge, CB4 0WN, U.K.

A multi-step continuous flow process for the N-demethylation of alkaloids

Yuji Nakano 1, G. Paul Savage 1, Simon Saubern 1, Peter J. Scammells 2, Anastasios Polyzos 1

1 CSIRO Materials Science and Engineering, Victoria, Australia.
2 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia.

A two-stage continuous-flow synthesis of spirooxazine photochromic dyes

Mark York 1,2,3, Adriana Edenharter 1

1 CSIRO Materials Science and Engineering, Clayton, Vic. 3169, Australia.
2 Cooperative Research Centre for Polymers, Notting Hill, Vic. 3168, Australia.
3 Advanced Polymerik Pty Ltd, Notting Hill, Vic. 3168, Australia

Ozonolysis of some complex organic substrates in flow

M. D. Roydhouse 1, W. B. Motherwell 1, A. Constantinou 2, A. Gavriilidis 2, R. Wheeler 3, Down 3, Campbell 3

1 Dept of Chemistry, University College London, UK
2 Dept of Chemical Engineering, University College London, UK
3 GSK, Stevenage, UK

Continuous synthesis and use of N-heterocyclic carbene copper(I) complexes from insoluble Cu2O

Suzanne M. Opalka 1, Jin Kyoon Park 3, Ashley R. Longstreet 2, D. Tyler McQuade 2

1 Department of Chemistry and Biochemistry, Florida State University, USA
2 Department of Chemistry and Chemical Biology, Cornell University, USA
3 Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Korea

An expeditious synthesis of imatinib and analogues utilising flow chemistry methods

Mark D Hopkin, Ian Baxendale, Steven.V.Ley

Dept of Chemistry, University of Cambridge, UK

Continuous-flow generation of diazoesters and their direct use in S-H and P-H insertion reactions:
synthesis of a-sulfanyl, a-sulfonyl and a-phosphono carboxylates
Hannah E. Bartrum¹, David C. Blakemore², Christopher J. Moody¹, Christopher J. Hayes¹
¹ School of Chemistry, University of Nottingham, UK
² Pfizer Neusentis, Cambridge, UK
http://dx.doi.org/10.1016/j.tet.2013.01.020

Synthesis of carbohydrate-functionlised sequence-defined oligo (amidoamine) by photochemical thiol-ene coupling in a continuous flow reactor
Felix Wojcik¹,², Alexander G. O'Brien¹,², Sebastian Götte¹,², Peter H. Seeberger¹,², Laura Hartmann¹,²
¹ Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam (Germany)
² Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
http://dx.doi.org/10.1002/chem.201203927

Synthesis of RAFT block copolymers in a multi-stage continuous flow process inside a tubular reactor
Christian H. Hornung, Xuan Nguyen, Stella Kyi, John Chiefari, Simon Saubern
CSIRO Materials Science & Engineering, Victoria, Australia.
http://dx.doi.org/10.1071/CH12479

Continuous flow synthesis of organic electronic materials: case studies in methodology translation and scale-up
Helga Seyler¹, Stefan Haid², Tae-Hyuk Kwon¹, David J. Jones¹, Peter Bäuerle², Andrew B. Holmes¹, Wallace W. H. Wong¹
¹ Bio21 Institute, University of Melbourne, Australia.
² Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Germany.
http://dx.doi.org/10.1071/CH12406

Preparation of arene chromium tricarbonyl complexes using continuous-flow processing: (η6-C6H5CH3)Cr(CO)3 as an example
Christopher (Xiang) Lee¹ , Elizabeth A. Pedrick¹ , Nicholas E. Leadbeater¹,²
¹ Department of Chemistry, University of Connecticut, USA
² Department of Community Medicine and Health Care, University of Connecticut Health Center, USA
http://dx.doi.org/10.1556/JFC-D-12-00018

Visible light-initiated preparation of functionalized polystyrene monoliths for flow chemistry
Farhan R. Bou-Hamdan¹, Kathleen Krüger¹, Klaus Tauer¹, Tyler McQuade¹,²,³, Peter H. Seeberger¹,²
¹ Max Planck Institute of Colloids and Interfaces Potsdam, Germany.
² Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany.
³ Department of Chemistry & Biochemistry, Florida State University, USA
http://dx.doi.org/10.1071/CH12405

Integrated continuous processing and flow characterization of RAFT polymerization in tubular flow reactors
Christian H. Hornung, Xuan Nguyen, Geoff Dumsday, Simon Saubern*
CSIRO Materials Science and Engineering, Victoria, Australia
http://dx.doi.org/10.1002/mren.201200029

Synthesis of an H3 antagonist via sequential one-pot additions of a magnesium ate complex and an amine to a 1,4-ketoester followed by carbonyl-directed fluoride addition
Joel M. Hawkins, Pascal Dubé, Mark T. Maloney, Lulin Wei, Marcus Ewing, Stephen M. Chesnut, Joshua R. Denette, Brett M. Lillie, Rajappa Vaidyanathan
Pharmaceutical Sciences, Pfizer Inc., Groton, USA
http://dx.doi.org/10.1021/op300093j

A "catch-react-release" method for the flow synthesis of 2-aminopyrimidines and preparation of the imatinib base
Richard J. Ingham, Elena Riva, Nikzad Nikbin, Ian R. Baxendale, and Steven V. Ley*
Innovative Technology Centre, University of Cambridge, U.K.
http://dx.doi.org/10.1021/ol301673q

Sustainable and efficient methodology for CLA synthesis and identification
Andres Moreno, Maria Moreno, Maria Victoria Gómez, Cristina Cebrian, Pilar Prieto, Antonio de la Hoz
Departamento de Quimica Inorgánica, Universidad de Castilla-La Mancha, Ciudad Real, Spain.
http://dx.doi.org/10.1039/C2GC35792E
Continuous synthesis and purification by direct coupling of a flow reactor with simulated moving-bed chromatography
Alexander G. O’Brien¹, Zoltán Horváth³, François Lévesque¹, Ju Weon Lee³, Andreas Seidel-Morgenstern³, Peter H. Seeberger¹,²
¹Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany
²Freie Universität Berlin, Germany
³Max-Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
http://dx.doi.org/10.1002/anie.201202795

A continuous flow process for the radical induced end group removal of RAFT polymers
Christian H. Hornung, Almar Postma, Simon Saubern, John Chiefari
CSIRO Materials Science & Engineering, Victoria, Australia
http://dx.doi.org/10.1002/mren.201200007

Continuous flow synthesis of secondary amides by tandem azidation-amidation of anilines
Christian Spiteri, John E. Moses*
School of Chemistry, University of Nottingham, UK
http://dx.doi.org/10.1055/s-0031-1291013

Asymmetric homogeneous hydrogenation in flow using a tube-in-tube reactor
Sean Newton¹, Steven V. Ley¹, Eva Casas Arcé², Damian M. Grainger²
¹Department of Chemistry, University of Cambridge, U.K.
²Johnson Matthey Catalysis & Chiral Technology, Cambridge, U.K.
http://dx.doi.org/10.1002/adsc.201200073

Continuous flow hydrogenation using an on-demand gas delivery reactor
Michael A. Mercadante, Christopher B. Kelly, Christopher (Xiang) Lee, Nicholas E. Leadbeater*
Department of Chemistry, University of Connecticut, USA
http://dx.doi.org/10.1021/op300019w

An efficient method for the lipase-catalysed resolution and in-line purification of racemic flurbiprofen in a continuous-flow reactor
Lucia Tamborini¹, Diego Romano², Andrea Pinto¹, Arianna Bertolani¹,², Francesco Molinari², Paola Conti¹
¹Dipartimento di Scienze Farmaceutiche ‘Pietro Pratesi’, Università degli Studi di Milano, Italy
²Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Italy
http://dx.doi.org/10.1016/j.molcatb.2012.02.008

Soluble polymer-supported flow synthesis: A green process for the preparation of heterocycles
Nicolò Prosa, Raphaël Turgis, Riccardo Piccardi, Marie-Christine Scherrman
Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, France
http://dx.doi.org/10.1002/ejoc.201101726

Continuous flow synthesis and scale-up of glycine- and taurine-conjugated bile salts
Francesco Venturoni, Antimo Gioiello, Roccoaldo Sardella, Benedetto Natalini and Roberto Pelliccari
Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Italy
http://dx.doi.org/10.1039/C2OB25528F

Development of a continuous flow scale-up approach of reflux inhibitor AZD6906
Tomas Gustafsson, Henrik Sörensén, Fritiof Pontén*
Medicinal Chemistry, AstraZeneca R&D Mölndal, Sweden
http://dx.doi.org/10.1021/op200340c

Phase-transfer catalysis under continuous flow conditions: an alternative approach to the biphasic liquid/liquid O-alkylation of phenols
Daniele De Zani², Matteo Colombo¹
¹NiKem Research 20021 via Zambeletti 25 Milan Baranzate, Italy
²Erregierre, San Paolo D’Argon Bergamo, Italy
http://dx.doi.org/10.1556/jfchem.2012.00020

Continuous-flow synthesis of the anti-malaria drug artemisinin
François Lévesque¹, Peter H. Seeberger¹,²
¹Department for Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany
http://dx.doi.org/10.1016/j.chembres.2012.02.008
Continuous proline catalysis via leaching of solid proline
Suzanne M. Opalka¹, Ashley R. Longstreet² and D. Tyler McQuade²
¹Department of Chemistry and Chemical Biology, Cornell University, USA
²Department of Chemistry and Biochemistry, Florida State University, USA
http://dx.doi.org/10.1002/anie.201107446

Scale-up of flow-assisted synthesis of C2-symmetric chiral PyBox ligands
Claudio Battilocchio¹³, Marcus Baumann¹, Ian R. Baxendale¹, Mariangela Biava³, Matthew O. Kitching¹, Steven V.
Ley¹, Rainer E. Martin*², Alexander I. Alanine¹
¹Department of Chemistry, University of Cambridge, UK
² F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, Basel, Switzerland
³ Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, Italy
http://dx.doi.org/10.3762/bjoc.7.194

Application of flow chemistry to the selective reduction of esters to aldehydes
Juan de M. Muñoz¹, Jesús Alcázar¹, Antonio de la Hoz², Angel Díaz-Ortiz²
¹Janssen, Toledo, Spain
²Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Spain
http://dx.doi.org/10.1055/s-0031-1289676

Synthesis of annulated pyridines by intramolecular inverse-electron-demand hetero-diels-alder reaction
under superheated continuous flow conditions
Rainer E. Martin¹, Falk Morawitz¹, Christoph Kuratli¹, André M. Alker², Alexander I. Alanine¹
¹Chemistry Technology and Innovation, F. Hoffmann-La Roche Ltd, Basel, Switzerland
²Biostructure Section, F. Hoffmann-La Roche Ltd, Basel Switzerland
http://dx.doi.org/10.1002/ejoc.201101458

The application of a monolithic triphenyolphosphine reagent for conducting appel reactions in flow
microreactors
Kimberley A. Roper¹, Heiko Lange¹, Anastasios Polyzos¹, Malcolm B. Berry², Ian R. Baxendale¹ and Steven V. Ley¹
¹Innovative Technology Centre, University of Cambridge
²GlaxoSmithKline, Stevenage, UK
http://dx.doi.org/10.1002/ejoc.201101538

Continuous preparation of arylmagnesium reagents in flow with inline IR monitoring
Trine P. Petersen 123, Dr. Anastasios Polyzos 14, Dr. Matthew O'Brien 1, Dr. Trond Ulven 2, Dr. Ian R. Baxendale 1, Prof. Steven V. Ley 1
¹Whiffen Laboratory, University of Cambridge, UK
² Department of Physics and Chemistry, University of Southern Denmark
³ Discovery Chemistry and DMPK, H. Lundbeck A/S, Denmark
⁴ CSIRO, Materials Science and Engineering, Australia
http://dx.doi.org/10.1002/cssc.201100339

New insights into cyclobutenone rearrangements: a total synthesis of the natural ROS-generating anti-
cancer agent cristrostatin (ROS=reactive-oxygen species)
Mubina Mohamed¹, Théo P. Gonçalves¹, Richard J. Whitby¹, Helen F. Sneddon², David C. Harrowven¹
¹Dept of Chemistry, University of Southampton, UK
²GSK Medicines Research Centre, Stevenage, UK
http://dx.doi.org/10.1002/chem.201102263

The oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using teflon AF-2400 to effect
gas/liquid contact
Trine P. Petersen 123, Dr. Anastasios Polyzos 14, Dr. Matthew O'Brien 1, Dr. Trond Ulven 2, Dr. Ian R. Baxendale 1, Prof. Steven V. Ley 1
¹Whiffen Laboratory, University of Cambridge, UK
² Department of Physics and Chemistry, University of Southern Denmark
³ Discovery Chemistry and DMPK, H. Lundbeck A/S, Denmark
⁴ CSIRO, Materials Science and Engineering, Australia
http://dx.doi.org/10.1002/cssc.201100339

Lead diversification 2: application to P38, gMTP and lead compounds
M. Abid Masood 1, Marc Bazin2, Mark E. Bunnage³, Andrew Calabrese³, Mark Cox³, Sally-Ann Fancy⁴,
Elizabeth Farrant¹, David W. Pearce¹, Manuel Perez¹, Laure Hitzel¹, Torren Peakman¹
¹ Worldwide Medicinal Chemistry, Pfizer, UK
² Hepatochem, Cambridge, MA, USA
³ Celgene San Diego, USA

A continuous-flow synthesis of annulated and polysubstituted furans from the reaction of ketones and a-haloketones
Mark York
CSIRO Materials Science and Engineering, Australia
Cooperative Research Centre for Polymers, Notting Hill, Australia

http://dx.doi.org/10.1016/j.bmcl.2011.11.033

Suzuki-Miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow
Timothy Noël and Andrew J. Musacchio
Department of Chemistry, MIT, USA

http://dx.doi.org/10.1016/j.tetlet.2011.09.083

The oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using teflon AF-2400 to effect gas/liquid contact
Trine P. Petersen123, Anastasios Polyzos14, Matthew O'Brien1, Trond Ulven2, Ian R. Baxendale1, Steven V. Ley1,*
1Whiffen Laboratory, Department of Chemistry, University of Cambridge
2Department of Physics and Chemistry, University of Southern Denmark
3Discovery Chemistry and DMPK, H. Lundbeck A/S, Denmark
4CSIRO, Materials Science and Engineering, Victoria, Australia

http://dx.doi.org/10.1002/cssc.201100339

Continuous flow synthesis of conjugated polymers
Helga Seyler, David J. Jones, Andrew B. Holmes and Wallace W. H. Wong
Bio21 Institute, University of Melbourne, Australia

http://dx.doi.org/10.1039/C1CC14315H

Continuous-flow, palladium-catalysed alkoxycarbonylation reactions using a prototype reactor in which it is possible to load gas and heat simultaneously
Michael A. Mercadante and Nicholas E. Leadbeater
Department of Chemistry, University of Connecticut, USA

http://dx.doi.org/10.1039/C1OB05808H

Teflon AF-2400 mediated gas–liquid contact in continuous flow methoxycarbonylations and in-line FTIR measurement of CO concentration
Peter Koos, Ulrike Gross, Anastasios Polyzos, Matthew O'Brien, Ian Baxendale and Steven V. Ley
Innovative Technology Centre, University of Cambridge, UK

http://dx.doi.org/10.1039/C1OB06017A

Rapid access to α-alkoxy and α-amino acid derivatives through safe continuous-flow generation of diazoesters
Hannah E. Bartrum¹, David C. Blakemore², Christopher J. Moody¹, Christopher J. Hayes¹
¹School of Chemistry, University of Nottingham, UK
²Pfizer Global Research and Development, Sandwich, UK

http://dx.doi.org/10.1002/chem.201101590

Continuous flow photolysis of aryl azides: preparation of 3H-azepinones
Farhan R. Bou-Hamdan, François Lévesque, Alexander G. O'Brien, Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Berlin, Germany

http://dx.doi.org/10.3762/bjoc.7.129

Ozonolysis in flow using capillary reactors
M. D. Roydhouse¹, A. Ghaini², A. Constantinou, A. Cantu-Perez², W. B. Motherwell¹, and A. Gavrilidis²
¹Department of Chemistry, University College London, UK
²Department of Chemical Engineering, University College London, UK

http://dx.doi.org/10.1021/op200036d
Nitrile oxide 1,3-dipolar cycloaddition by dehydration of nitromethane derivatives under continuous flow conditions
Malte Brasholz, Simon Saubern* and G. Paul Savage
CSIRO Materials Science and Engineering, Victoria, Australia.

http://dx.doi.org/10.1071/CH11079

Nitrification chemistry in continuous flow using fuming nitric acid in a commercially available flow reactor
Cara E. Brocklehurst, Hansjrg Lehmann, and Luigi La Vecchia
Global Discovery Chemistry, Novartis, Basel, Switzerland

http://dx.doi.org/10.1021/op200055r

Synthesis of a drug-like focused library of trisubstituted pyrrolidines using integrated flow chemistry and batch methods
Marcus Baumann¹, Ian R. Baxendale¹, Steven V. Ley¹, Christoph Kuratli², Rainer E. Martin², Josef Schneider²
¹Innovative Technology Centre, University of Cambridge, U.K.
²F. Hoffmann-La Roche Ltd., Basel, Switzerland.

http://dx.doi.org/10.1021/CO2000357

Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies
Elena Riva², Anna Rencurosi¹, Stefania Gagliardi¹, Daniele Passarella², Marisa Martinelli*¹
¹NiKem Research S.r.l., Milan, Italy
²Università degli Studi di Milano, Milan, Italy

http://dx.doi.org/10.1002/chem.201100300

Preparation of fluoxetine by multiple flow processing steps
Batoul Ahmed-Omer, Adam J. Sanderson
Eli Lilly and Co. Ltd., Lilly Research Centre, UK.

http://dx.doi.org/10.1039/C0OB00906G

Oxidation reactions in segmented and continuous flow chemical processing using an N-(tert-Butyl)phenylsulfonimidoyl chloride monolith
Lange, Matthew J. Capener, Alexander X. Jones, Catherine J. Smith, Nikzad Nikbin, Ian R. Baxendale, Steven V. Ley*
Innovative Technology Centre, University of Cambridge, UK

http://dx.doi.org/10.1055/s-0030-1259923

Decarboxylative biaryl synthesis in a continuous flow reactor
Paul P. Lange¹, Lukas J. Gooßen, Philip Podmore, Toby Underwood, Nunzio Sciammetta
¹Technische Universität Kaiserslautern, Germany
²Pfizer Global R&D, Sandwich, UK

http://dx.doi.org/10.1039/C0CC05708H

Diastereoselective chain-elongation reactions using microreactors for applications in complex molecule assembly
Catherine F. Carter¹, Heiko Lange¹, Daiki Sakai², Ian R. Baxendale¹, Steven V. Ley¹
¹Innovative Technology Centre, University of Cambridge, UK, CB2 1EW, UK
²Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan

http://dx.doi.org/10.1002/chem.201003148

One-flow, multistep synthesis of nucleosides by Brønsted acid-catalyzed glycosylation
Adam Sniady, Matthew W. Bedore, Timothy F. Jamison
Novartis Institutes for Biomedical Research Inc., Cambridge, USA
MIT, Cambridge, USA

http://dx.doi.org/10.1002/ange.201006440

An integrated flow and batch-based approach for the synthesis of o-methyl siphonazole
Marcus Baumann, Ian R. Baxendale, Malte Brasholz, John J. Hayward, Steven V. Ley, Nikzad Nikbin
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1055/s-0030-1260573

Flow synthesis of organic azides and the multistep synthesis of imines and amines using a new monolithic
Flow Chemistry Publications - 24 - www.vapourtec.co.uk/publications

triarylphosphine reagent
Catherine J. Smith, Christopher D. Smith, Nikzad Nikbin, Steven V. Ley, Ian R. Baxendale
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1029/C0OB00813C

A fully automated, multistep flow synthesis of 5-amino-4-cyano-1,2,3-triazoles
Catherine J. Smith, Nikzad Nikbin, Steven V. Ley, Heiko Lange, Ian R. Baxendale
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1029/C0OB00815J

A general, one-step synthesis of substituted indazoles using a flow reactor
Rob C. Wheeler, Emma Baxter, Ian B. Campbell, Simon J. F. Macdonald
GlaxoSmithKline, Stevenage, UK
http://pubs.acs.org/doi/abs/10.1021/op100288t

Continuous flow synthesis of fullerene derivatives
Helga Seyler, Wallace Wing Ho Wong, Dave Jones, Andrew B. Holmes
University Of Melbourne, Australia
http://dx.doi.org/10.1021/jo2001879

Controlled RAFT polymerization in a continuous flow microreactor
Christian H. Hornung, Carlos Guerrero-Sanchez, Malte Brasholz, Simon Saubern, John Chieffari, Graeme Moad, Ezio Rizzard, San H. Thang
CSIRO Materials Science & Engineering, Victoria, Australia
http://dx.doi.org/10.1021/op1003314

Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing
Malte Brasholz, Karin von Känel, Christian H. Hornung, Simon Saubern, John Tsanaktsidis
CSIRO Materials Science & Engineering, Victoria, Australia
http://dx.doi.org/10.1021/ol1027927

Continuous flow thermolysis of azidoacrylates for the synthesis of heterocycles and pharmaceutical intermediates
Alexander G. O'Brien, François Lévesque and Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
http://dx.doi.org/10.1021/ol1026848

Safe and reliable synthesis of diazoketones and quinoxalines in a continuous flow reactor
Laetitia J. Martin¹, Andreas L. Marzinzik¹, Steven V. Ley², Ian R. Baxendale²
¹ Novartis Institute for BioMedical Research, Basel, Switzerland
² Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1021/ol1026848

The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor
Anastasios Polyzos, Matthew O'Brien, Trine P. Petersen, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1002/anie.201006618

A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing
Heiko Lange¹, Catherine F. Carter¹, Mark D. Hopkin¹, Adrian Burke², Jon G. Goode², Ian R. Baxendale¹, Steven V. Ley¹
¹ Innovative Technology Centre, University of Cambridge, UK
² Mettler-Toledo AutoChem, UK
http://dx.doi.org/10.1021/ol1026848

Continuous flow coupling and decarboxylation reactions promoted by copper tubing
Yun Zhang¹, Timothy F. Jamison², Sejal Patel³, Nello Mainolfi¹
¹ Novartis Institutes for Biomedical Research Inc., Cambridge, USA
² MIT, Cambridge, USA
http://dx.doi.org/10.1021/ol1026848
Synthesis of \(\beta\)-Keto esters in-flow and rapid access to substituted pyrimidines
Hannah E. Bartrum\(^1\), David C. Blakemore\(^2\), Christopher J. Moody\(^1\), and Christopher J. Hayes\(^1\)
\(^1\) School of Chemistry, University of Nottingham, UK
\(^2\) Pfizer Global Research and Development, Sandwich, UK

http://dx.doi.org/10.1021/jo101783m

Synthesis of 3-aryl/benzyl-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole derivatives: a comparison between conventional, microwave-assisted and flow-based methodologies
Sabrina Castellano\(^1\), Lucia Tamborini\(^2\), Monica Viviano\(^1\), Andrea Pinto\(^2\), Gianluca Sbardella\(^1\), and Paola Conti\(^2\)
\(^1\) Dipartimento di Scienze Farmaceutiche, Universit degli Studi di Salerno, Italy
\(^2\) Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Universit degli Studi di Milano, Italy

http://dx.doi.org/10.1021/jo1014323

Flow synthesis of tricyclic spiropiperidines as building blocks for the histrionicotoxin family of alkaloids
Malte Brasholz\(^1\), Brian A. Johnson\(^2\), James M. Macdonald\(^1\), Anastasios Polyzos\(^1\), John Tsanaktsidis\(^1\), Simon Saubern\(^1\), Andrew B. Holmes\(^1,2\) and John H. Ryan\(^1\)
\(^1\) CSIRO Molecular and Health Technologies, Victoria, Australia
\(^2\) School of Chemistry, Bio 21 Institute, University of Melbourne, Victoria, Australia

http://dx.doi.org/10.1016/j.tet.2010.04.092

A continuous flow process using a sequence of microreactors with in-line IR analysis for the preparation of N,N-diethyl-4-(3-fluorophenylpiperidin-4-ylidenemethyl)benzamide as a potent and highly selective \(\delta\)-opioid receptor agonist
Zizheng Qian, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, University of Cambridge

http://dx.doi.org/10.1002/chem.201002147

Preparation of arylsulfonyl chlorides by chlorosulfonylation of in situ generated diazonium salts using a continuous flow reactor
Laia Malet-Sanz, Julia Madrzak, Steven V.Ley and Ian R.Baxendale
Innovative Technology Centre, University of Cambridge

http://dx.doi.org/10.1039/C0OB00450B

KMnO\(_4\)-mediated oxidation as a continuous flow process
Jorg Sedelmeier, Steven V. Ley, Ian R. Baxendale and Marcus Baumann
Innovative Technology Centre, University of Cambridge

http://dx.doi.org/10.1021/ol101345z

Synthesis of highly substituted nitropyrrrolidines, nitropyrrrolizines and nitropyrrroles via multicomponent-multistep sequences within a flow reactor
Marcus Baumann, Ian R. Baxendale, Andreas Kirschning, Steven V. Ley,* and Jens Wegner
Department of Chemistry, University of Cambridge

http://dx.doi.org/10.3987/COM-10-S(E)77

A gram-scale batch and flow total synthesis of perhydrohistrionicotoxin
Dr. Malte Brasholz\(^1\), Dr. James M. Macdonald\(^\text{a}\), Dr. Simon Saubern\(^1\), Dr. John H. Ryan\(^1\), Prof. Dr. Andrew B. Holmes\(^1,2\)
\(^1\) CSIRO Molecular and Health Technologies, Victoria, Australia
\(^2\) School of Chemistry, Bio 21 Institute, University of Melbourne, Victoria, Australia

http://dx.doi.org/10.1002/chem.201090183

Effect of phase transfer chemistry, segmented fluid flow, and sonication on the synthesis of cinnamic esters
Mauro Riccaboni, Elena La Porta, Andrea Martorana and Roberta Attanasio
Department of Medicinal Chemistry, NiKem Research Srl, Milan, Italy

http://dx.doi.org/10.1016/j.tet.2010.04.031

Continuous flow palladium (II)-catalyzed oxidative Heck reactions with arylboronic acids
Luke R. Odell\(^1\), Jonas Lindh\(^1\), Tomas Gustafsson\(^2\), Mats Larhed\(^1\)
\(^1\) CSIRO Molecular and Health Technologies, Victoria, Australia
\(^2\) School of Chemistry, Bio 21 Institute, University of Melbourne, Victoria, Australia
Reaction of Grignard reagents with carbonyl compounds under continuous flow conditions
E. Riva1, S. Gagliardi2, M. Martinelli2, D. Passarella1, D. Vigo2 and A. Rencurosi2.
1 Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
2 NiKem Research S.r.l., Milan, Italy

http://dx.doi.org/10.1002/ejoc.201000063

[3+2] Dipolar cycloadditions of an unstabilised azomethine ylide under continuous flow conditions
Mark Grafton, Andrew C. Mansfield and M. Jonathan Fray
Pfizer Global Research and Development, Sandwich, UK

http://dx.doi.org/10.1016/j.tet.2010.02.078

A highly efficient flow reactor process for the synthesis of N-Boc-3,4-dehydro-L-proline methyl ester
Lucia Tamborini, Paola Conti, Andrea Pinto and Carlo De Micheli
Dipartimento di Scienze Farmaceutiche ‘Pietro Pratesi’, Università degli Studi di Milano, Italy

http://dx.doi.org/10.1016/j.tet.2010.02.078

Efficient continuous flow synthesis of hydroxamic acids and suberoylanilide hydroxamic acid preparation
E. Riva1, S. Gagliardi2, Caterina Mazzoni2, M. Martinelli2, D. Passarella1, D. Vigo2 and A. Rencurosi2.
1 Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
2 NiKem Research S.r.l., Milan, Italy

http://dx.doi.org/10.1016/j.tet.2010.02.078

The application of flow microreactors to the preparation of a family of casein kinase I inhibitors
Francesco Venturoni, Nikzad Nikbin, Steven V. Ley and Ian R. Baxendale
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1021/jo900144h

Multi-step synthesis by using modular flow reactors: the preparation of YneOnes and their use in heterocycle synthesis
Ian R. Baxendale1, Søren C. Schou2, Jörg Sedelmeier1, Steven V. Ley1
1 ITC, Department of Chemistry, University of Cambridge
2 LEO Pharma, Medicinal Chemistry Research, Denmark

http://dx.doi.org/10.1002/chem.200902906

A flow process using microreactors for the preparation of a quinolone derivative as a potent 5HT\textsubscript{1B} antagonist
Zizheng Qian, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, Cambridge, UK

A flow-based synthesis of Imatinib: the API of Gleevec
Mark D. Hopkin, Ian R. Baxendale and Steven V. Ley
Innovative Technology Centre, Cambridge, UK

http://dx.doi.org/10.1039/c001550d

ReactIR flow cell: a new analytical tool for continuous flow chemical processing
Catherine F. Carter1, Heiko Lange1, Steven V. Ley1, Ian R. Baxendale1, Brian Wittkamp2, Jon G. Goode3 and Nigel L. Gaunt3
1 Innovative Technology Centre, Department of Chemistry, University of Cambridge
2 Mettler-Toledo AutoChem, USA
3 Mettler-Toledo AutoChem, UK

http://dx.doi.org/10.1021/op900305v

A safe and reliable procedure for the iododeamination of aromatic and heteroaromatic amines in a continuous flow reactor
Laia Malet-Sanz, Julia Madrzak, Rhian S. Holvey and Toby Underwood

http://dx.doi.org/10.1021/op900305v
Development of fluorination methods using continuous-flow microreactors
Marcus Baumann, Ian R. Baxendale, Laetitia J. Martin, Steven V. Ley
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1016/j.tetlet.2009.10.007

Multistep synthesis using modular flow reactors: Bestmann-Ohira reagent for the formation of alkynes and triazoles
Ian R. Baxendale¹, Steven V. Ley¹, Andrew C. Mansfield ², Christopher D. Smith¹
¹ITC, Department of Chemistry, University of Cambridge,
²Pfizer Global R&D Research Centre, Sandwich, (UK)
http://dx.doi.org/10.1002/anie.200900970

A bifurcated pathway to thiazoles and imidazoles using a modular flow microreactor
Ian R. Baxendale, Steven V. Ley, Christopher D. Smith, Lucia Tamborini and Ana-Florina Voica
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1021/cc800070a

The use of diethylaminosulfur trifluoride (DAST) for fluorination in a continuous-flow microreactor
Marcus Baumann, Ian R. Baxendale, Steven V. Ley
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1055/s-2008-1078026

A modular flow reactor for performing Curtius rearrangements as a continuous flow process
Marcus Baumann¹, Ian R. Baxendale¹, Steven V. Ley¹, Nikzad Nikbin¹, Christopher D. Smith¹ and Jason P. Tierney²
¹ Innovative Technology Centre, Department of Chemistry, University of Cambridge
² Neurology Lead Discovery Chemistry, GlaxoSmithKline R and D, Harlow, UK
http://dx.doi.org/10.1039/b801631n

[3 + 2] Cycloaddition of acetylenes with azides to give 1,4-disubstituted 1,2,3-triazoles in a modular flow reactor
Christopher D. Smith¹, Ian R. Baxendale¹, Steve Lanners¹, John J. Hayward¹, Steven V. Ley¹, Stephen C. Smith²
¹Innovative Technology Centre, University of Cambridge, UK
²Syngenta, Jealots Hill International Research Centre, UK
http://dx.doi.org/10.1039/b702995k

Azide monoliths as convenient flow reactors for efficient Curtius rearrangement reactions
Marcus Baumann, Ian R. Baxendale, Steven V. Ley, Nikzad Nikbin and Christopher D. Smith
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1039/b801634h

A microcapillary flow disc reactor for organic synthesis
Christian H. Hornung¹, Malcolm R. Mackley², Ian R. Baxendale¹, Steven V. Ley¹
¹ Department of Chemistry, University of Cambridge
² Department of Chemical Engineering, University of Cambridge
http://dx.doi.org/10.1021/op700015f

A flow reactor process for the synthesis of peptides utilizing immobilized reagents, scavengers and catch and release protocols
Ian R. Baxendale, Steven V. Ley, Christopher D. Smith and Geoffrey K. Tranmer
Innovative Technology Centre, Cambridge, UK
http://dx.doi.org/10.1039/b612197g

Fully automated flow-through synthesis of secondary sulfonamides in a binary reactor system
Charlotte M. Griffiths-Jones, Mark D. Hopkin, Daniel Jönsson, Steven V. Ley, David J. Tapolcay, Emma Vickerstaffe, and Mark Ladlow
GlaxoSmithKline Cambridge Technology Centre, Cambridge
http://dx.doi.org/10.1021/cc060152b

Fully automated continuous flow synthesis of 4,5-disubstituted oxazoles
Continuous flow ligand-free hock reactions using monolithic Pd [0] nanoparticles
Nikzad Nikbin, Mark Ladlow, and Steven V. Ley
Department of Chemistry, University of Cambridge, UK
http://dx.doi.org/10.1021/op7000436

Tagged phosphine reagents to assist reaction work-up by phase-switched scavenging using a modular flow reactor
Christopher D. Smith, Ian Baxendale, Geoffrey Tranmer, Marcus Baumann, Stephen Smith, Russell Lewthwaite and Steven V. Ley
Department of Chemistry, University of Cambridge, UK
http://dx.doi.org/10.1039/b703033a

A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly
Ian R. Baxendale, Jon Deeley, Charlotte M. Griffiths-Jones, Steven V. Ley, Steen Saaby and Geoffrey K. Tranmer
Innovative Technology Centre, University of Cambridge
http://dx.doi.org/10.1039/B600382F